If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3c^2-10c+4=0
a = 3; b = -10; c = +4;
Δ = b2-4ac
Δ = -102-4·3·4
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{13}}{2*3}=\frac{10-2\sqrt{13}}{6} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{13}}{2*3}=\frac{10+2\sqrt{13}}{6} $
| X1=4x-70 | | 2x+10-4x=6-4x+4 | | -1+9a=80 | | -4/5(x-8.9)=12.6 | | 3x-4/7.5=8/4 | | (m÷4)+2=1 | | m÷4+2=1 | | x^2-3=-3^2+8x | | 1+10b=-199 | | 2+10v=-28 | | X2-3x=2x+84 | | 2p-3=p+5 | | (2y-2)^2=144 | | X2+3x+11=0 | | 9x+24=3(2x-1) | | r+9÷5=2 | | n/7=23 | | 2u+6=3-3u+23 | | 2u+6=3-3u23 | | 10=3-y | | x+61+130=180 | | 69+x+115=180 | | y-5/2=5/3 | | 60=1/5•x | | 3x+10=12x+50 | | a=1^5 | | X=-x-2 | | 121/9x=11 | | h/15=16/3= | | 7×+y=25 | | X+8-2=x+4 | | 17^x+2=5^-8x |